(一)“立方数”数列的变形一:
【1】7,26,63,( )
A.124
B.128
C.125
D.101
【答案】A选项
【解析】这是一个典型的“立方数”的数列,其规律是每一个立方数减去一个常数,即第一项是2的立方减去1,第二项是3的立方减去1,第三项是4的立方减去1,同理我们推出第四项应是5的立方减去1,即第五项等于124。所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形:
【2】9,28,65,( )
A.126
B.128
C.125
D.124
【答案】A选项
【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个常数,即第一项是2的立方加上1,第二项是3的立方加上1,第三项是4的立方加上1,同理我们推出第四项应是5的立方加上1,即第五项等于124。所以A选项正确。
(二)“立方数”数列的变形二:
【3】9,29,67,( )
A.129
B.128
C.125
D.126
【答案】A选项
【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个数值,,而这个数值本身就是有一定规律的。即第一项是2的立方加上1,第二项是3的立方加上2,第三项是4的立方加上3,同理我们假设第四项应是5的立方加上X,我们看所加上的值所形成的规律是2,3,4,X,我们可以发现这是一个很明显的等差数列,即X=5,即第五项等于5的立方加上5,即第五项是129。所以A选项正确。
规律七:求差相减式数列
规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【4】8,5,3,2,1,( )
A.0
B.1
C.-1
D.-2
【答案】A选项
解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。我们看第一项8与第二项5的差等于第三项3;第二项5与第三项3的差等于第三项2;第三项3与第四项2的差等于第五项1;
同理,我们推敲,第六项应该是第四项2与第五项1的差,即等于0;所以A选项正确。
规律八:“平方数”数列及其变式
【5】1,4,9,16,25,()
A.36
B.28
C.32
D.40
【答案】A选项
【解析】这是一个典型的“立方数”的数列,即第一项是1的平方,第二项是2的平方,第三项是3的平方,第四项是4的平方,第五项是5的平方。同理我们推出第六项应是6的平方。所以A选项正确。
(一)“平方数”数列的变形一:
【6】0,3,8,15,24,()
A.35
B.28
C.32
D.40
【答案】A选项
【解析】这是一个典型的“立方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方减去1,第二项是2的平方减去1,第三项是3的平方减去1,第四项是4的平方减去1,第五项是5的平方减去1。同理我们推出第六项应是6的平方减去1。所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形:
【7】2,5,10,17,26,()
A.37
B.38
C.32
D.40 【答案】A选项
【解析】这是一个典型的“平方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方加上1,第二项是2的平方加上1,第三项是3的平方加上1,第四项是4的平方加上1,第五项是5的平方加上1。同理我们推出第六项应是6的平方加上1。所以A选项正确。
(二)“平方数”数列的变形二:
【8】2,6,12,20,30,()
A.42
B.38
C.32
D.40
【答案】A选项
【解析】这就是一个典型的“平方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。即第一项是1的平方加上1,第二项是2的平方加上2,第三项是3的平方加上3,第四项是4的平方加上4,第五项是5的平方加上5。同理我们假设推出第六项应是6的平方加上X。而把各种数值摆出来分别是:1,2,3,4,5,X。由此我们可以得出X=6,即第六项是6的平方加上6,所以A选项正确。
规律九:“隔项”数列
【9】1,4,3,9,5,16,7,()
A.25
B.28
C.10
D.9 【答案】A选项
【解析】这是一个典型的“各项”的数列。相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。单数的项分别是:1,3,5,7。这是一组等差数列。而双数的项分别是4,9,16,()。这是一组“平方数”的数列,很容易我就可以得出(?)应该是5的平方,即A选项正确。
【规律点拨】这类数列无非是把两组数列“堆积”在一起而已,李老师认为只要考生的眼睛稍微“跳动”一下,则很容易就会发现两组规律。
规律十:混合式数列
【10】1,4,3,8,5,16,7,32,( ),()
A.9,64
B.9,38
C.11,64
D.36,18
【答案】A选项
【解析】这是一个典型的要求考生填两个未知数字的题目。同样这也是“相隔”数列的一种延伸,但这种题型,李老师认为考生未来还是特别留意这种题型,因为将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。所以大家还是认真总结这类题型。
我们看原数列中确实也是由两组数列结合而成的。单数的项分别是:1,3,5,7,()。很容易我们就可以得出(?)应该是9,这是一组等差数列。
而双数的项分别是4,8,16,32,(?)。这是一组“等比”的数列,很容易我们就可以得出(?)应该是32的两倍,即64。所以,A选项正确。